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Abstract. A simplified relativistic configuration interaction method is used to study the dielectronic satel-
lite transition processes. In this method, the infinite resonant doubly excited states can be calculated,
and furthermore, the whole high-n dielectronic satellite transition processes can be treated conveniently
by interpolation (rather than extrapolation) in the frame of Quantum Defect Theory. As an example, we
calculate the contributions from high-n dielectronic satellites to the Kα resonance line in helium-like iron,
and the results are in good agreement with the experimental measurements.

PACS. 34.80.Kw Electron-ion scattering; excitation and ionization – 34.80.Dp Atomic excitation
and ionization by electron impact

1 Introduction

The Kα X-ray emission of the transition metals Ti, Cr,
Fe, and Ni is extensively used for determining the param-
eters of high-temperature tokamak plasmas [1–6]. But it
is blended with lithiumlike dielectronic satellites due to
transitions 1s2nl−1s2pnl with n ≥ 3. These unresolved
satellites lead to a significant increase in both the ap-
parent width and intensity of the resonance line which
must be taken into account for Doppler-broadening and
Doppler-shift measurements, as well as for the evaluation
of the satellite-to-resonance-line ratio which is used for
diagnostics of solar flares and tokamak plasmas [6–12].
In these important diagnostic applications, it is necessary
to determine the contribution of these satellites as accu-
rately as possible. In plasma, due to blending with the res-
onance line, their intensities and positions have never been
measured directly and reliance must be solely on theory.
However, explicit calculations of the high-n-satellite line
strengths are difficult because the number of resonance
doubly excited states increases rapidly with the princi-
pal quantum number of the outermost occupied shell of
the resonance state; there even exist infinite resonance
doubly excited states which emit the high-n-satellite lines
as the principal quantum number of the outermost oc-
cupied shell approaches infinity. As a result, most of the
explicit calculations have been limited so far to low-lying
resonance doubly excited states with n ≤ 4, while an
approximate 1/n3 scaling law has generally been used
to extrapolate the satellite intensity factors for n > 4
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[1,13–17]. But for low Z or low ionization stage ions, due
to strong screening, the extrapolation is not reliable [18].
Karim and Bhalla have performed explicit calculations of
n = 3 − 8 dielectronic satellite line strengths using the
Hartree-Fock atomic model for helium-like Ne, Si, Ar, Ti,
Cr, and Ni, and check the validity of the 1/n3 scaling
law approximately [19]. In fact, Quantum Defect Theory
(QDT) has been developed to treat the atomic processes
involving high Rydberg states [20–22], and this was also
used to study the DR cross-sections and rate coefficients
for high Rydberg states by extrapolation [18,23–26]. Re-
cently, in the frame of QDT, we have developed a simpli-
fied relativistic configuration interaction (SRCI) method
to study the dielectronic recombination (DR) processes.
In this method, all the resonant doubly excited high Ry-
dberg states can be treated in an unified manner by in-
terpolation (rather than extrapolation), and then the DR
cross-sections and rate coefficients can be obtained con-
veniently. We have calculated the DR cross-sections of
the hydrogen-like and helium-like ions [27–31] and the
results are in agreement with the experimental measure-
ment [32–34].

In the present paper, a similar method is developed to
calculate the contributions from high-n dielectronic satel-
lite (DS) lines to the resonance line, in which all the
high-n dielectronic satellites involving infinite resonant
doubly excited states can be calculated conveniently by
interpolation in the frame of QDT. As an example, we
study the contributions from high-n DS lines to the Kα
resonance line in helium-like iron, and the theoretical re-
sults are compared with the experimental measurements.
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2 Theoretical method

The DS transition processes of helium-like iron has the
form

e− + Fe24+(1s2)→ Fe23+(1snrlrnl)
∗∗

→ Fe23+(1s2nl)∗ + hν. (1)

Here, as a free electron with a specific kinetic energy
collides with an iron ion Fe24+(1s2) (denoted by i), one
bound electron of Fe24+(1s2) is excited from 1s orbital into
nrlr orbital and the free electron is captured into an unoc-
cupied orbital nl, and then a resonant doubly excited state
Fe23+(1snrlrnl)

∗∗(j) is formed; subsequently, the resonant
doubly excited state decays into a non-autoionizing state
Fe23+(1s2nl)∗(k) through radiative transition processes
Fe23+(1snrlrnl)

∗∗ → Fe23+(1s2nl)∗, which emits the di-
electronic satellite line.

The total DS cross-section from i to j and finally to k
can be obtained in the isolated resonances approximation
(atomic units are used throughout unless specified),

σDS(i, j, k) = σci,jB
r
j,k (2)

where σci,j is the cross-section of the resonance capture

processes, in which the Fe24+ ion in initial state i(1s2)
captures a free electron with a specific energy εi and forms
the resonance doubly excited state j(1snrlrnl). B

r
j,k is the

radiative branching ratio from state j to the final state k.
σci,j and Brj,k can be calculated by

σci,j =
π2~3

meεi

gj

2gi
Aaj,iδ(ε− εi), (3)

and

Brj,k =
Aaj,k∑

k′ A
r
j,k′ +

∑
i′ A

a
j,i′

(4)

where gi and gj are the statistical weight of the state i and
j, respectively. The summation i′ is over all possible Auger
final states of Fe23+ (j), and the summation k′ is over all
possible states of Fe23+ whose energies are below state j.
δ(ε− εi) is a delta function. Aaji (Aaji′) is Auger decay rate

(inverse resonant capture), which can be calculated by the
Fermi golden rule,

Aaji =
2π

~
|〈Ψj |

∑
s<t

1

rs,t
|Ψiεi〉|

2, (5)

where Ψj and Ψiεi are antisymmetrized many-electron
wavefunctions for j state and i state plus a free electron,
respectively.

We construct the configuration wavefunctions
φ(ΓJM) (Γ denotes the quantum numbers 1snrlrnl and
parity) as anti-symmetrized product-type wavefunctions
from central-field Dirac orbitals with appropriate angular
momentum coupling [35]. All relativistic single-electron
wavefunctions (bound and continuum) are calculated
based on the atomic self-consistent potential [36,37].

An atomic state function for the state j(1snrlrnl) with
total angular momentum JM is then expressed as linear
superposition of the configuration wavefunctions with
same principal quantum numbers (nr, n), and same
orbital angular momentum quantum numbers (lr, l)

ψj(JM) =
m∑
λ=1

Cjλφ(ΓλJM). (6)

Here m is the number of the configuration wavefunctions
and the mixing coefficients Cjλ for state j are obtained by
diagonalizing the relevant Hamiltonian matrices [35]. The
free state is chosen as the single configuration wavefunc-
tion. Then we have

Aaji =
2π

~
|
m∑
λ=1

CjλM
a
ijλ|

2, (7)

where the Auger decay matrix element Ma
ijλ is defined as

Ma
ijλ = 〈φ(ΓλJM)|

∑
s<t

1

rs,t
|Ψiεi〉. (8)

Based on QDT, when (nr,lr,l) are fixed and n varies from
bound to continuum state, all the resonant doubly excited
states with same J will form a channel. In the channel, the
energy-normalized matrix element can be defined as

M
a

ijλ = Ma
ijλ(ν3/2

n /q), (9)

here (ν3
n/q

2) is the density of states [29,30], νn = n− µn,
and µn is the corresponding quantum defect. This energy-
normalized matrix element M

a

ijλ varies smoothly with the
electron orbital energy in the channel. When the energy-
normalized matrix elements of a few states (including one
continuum state) in a channel have been calculated, the
Auger decay matrix elements of infinite discrete states of
that channel can be obtained by interpolation [29]. On
the other hand, the mixing coefficients Cjλ in (6) are al-
most unchanged within a channel [29]. We can use the
mixing coefficients of a state with a certain high princi-
pal quantum number to approximate that of those states
with higher principal quantum number. From the expres-
sion (7), the Auger rates and capture rates (by detailed
balance) of the infinite resonant doubly excited states can
be obtained conveniently.

Arjk is radiative decay rate, which is defined as

Arjk =
4e2ω

3~c3gj
|〈Ψj |T

(1)|Ψk〉|
2, (10)

where ω is photon energy, T (1) is electronic dipole opera-
tor [35]. The atomic wavefunction Ψk for final state k can
be constructed in the similar way as the expression (6)

ψk(J ′M ′) =
m′∑
λ′=1

Ckλ′φ
′(Γ ′λJ

′M ′). (11)
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Then we have

Arjk =
4e2ω

3~c3gj
|
m,m′∑
λ,λ′=1

CjλCkλ′M
r
jk|

2, (12)

where the radiative transition matrix element is defined as

Mr
jk = 〈φ(ΓλJM)|T (1)|φ′(Γ ′λJ

′M ′)〉. (13)

For the radiative process with the final state k(1s2nl),
the resonant doubly excited states with the fixed angular
momentum character (nrlr, l) and different orbital energy
form a channel. In the channel, the energy-normalized ra-
diative transition matrix element is defined as

M
r

jk = Mr
jk(ν3/2

n /q). (14)

This energy-normalized matrix element varies slowly with
the electron orbital energy. By interpolation, all the
energy-normalized matrix elements of infinite discrete
states in a channel can be obtained [29]. From the ex-
pression (12), we can obtain all the radiative rates in the
channel.

The resonance energy εi can be calculated under the
frozen core approximation [38]. Then, we can obtain the
DS cross-sections in formula (2) for any resonant doubly
excited states conveniently.

The DS strength, which is the integral of the DS
cross-section over the resonance energy width, can be writ-
ten as

Sijk =
π2~3

meεj

gj

2gi

AajiA
r
jk∑

k′ A
r
jk′ +

∑
i′ A

a
ji′
· (15)

Then, the calculated cross-sections should be convoluted
with a Gaussian distribution of an energy resolution Γ .
Here, the experimental resolution width 50 eV (FWHM)
is used.

The convoluted cross-section is

σDSt (ε) =
∑
j

Sijk√
2πΓ

exp

[
−

(ε− εj)2

2Γ 2

]
. (16)

We also present the spectral contribution of different
high-n DS lines, in which the DS strengths are convoluted
with a Gaussian distribution of an experimental wave-
length resolution ∆λ/λ = 1/3600,

σDSλ (λ) =
∑
j

Sijk√
2π∆λ

exp

[
−

(λ− λjk)2

2∆λ2

]
. (17)

Here λjk is the DS wavelength, whose separation from the
resonance line Kα is given in Figure 2.

3 Results and discussion

As an example, we study the contributions from high-n
dielectronic satellites to the Kα resonance lines in helium-
like iron. The convoluted cross-section as a function of free

Fig. 1. (a) Calculated DS cross-sections as a function of elec-
tron energy for the n = 3, 4, 5, . . .∞ resonances; (b) experi-
mental DS intensities below threshold for electron-impact ex-
citation [10].

Table 1. The DS resonance strengths for n = 3, 4, 5 and n ≥ 6.

Total Scal Total Sexp [10]

Resonance (10−20 cm2 eV) (10−20 cm2 eV)

n = 3 28.14 30.92

n = 4 11.18 10.32

n = 5 4.83 4.50

n ≥ 6 11.89 11.36

electron energy is given in Figure 1a. The resolved fea-
tures correspond to the emission from the KLM (n = 3),
KLN (n = 4) and KLO (n = 5) resonances and the high-
n contribution is calculated by the QDT. The strength
of each resonance decreases as n increases; however, the
number of resonances in a given interval increases, and the
convoluted cross-section therefore varies smoothly across
the threshold for electron-impact excitation. The relevant
experimental intensities of the Kα radiation is given in
Figure 1b [10]. Our calculated positions and relative in-
tensities of each of the resonances are in agreement with
the experimental measurements.

Our calculated DS strengths are given in Table 1. It
can be seen that although the strength of each resonance
decreases as n increases, the resonances (n > 3) almost
give the same contribution as the resonances (n = 3);
even the resonances n ≥ 6 (in our calculation, we choose
n ≤ 50) also give an important contribution. Our calcu-
lated spectral contribution of different high-n DS lines as
the separation from the Kα resonance line is shown in
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Fig. 2. (a) Calculated DS cross-sections as a function of sep-
aration from Kα resonance line for the n = 3, 4, 5, . . .∞ reso-
nances; (b) experimental DS intensities [10].

Figure 2a, which are compared with the relative exper-
imental values in Figure 2b [10]. The comparison shows
our results are in good agreement with the experimental
measurements of positions and relative strength. We can
see that the high-n satellites are found mostly on the long
wavelength side, and their position approaches the reso-
nance line as the n increases. This means that these high-n
DS lines are seriously mixed with resonance lines, such as
the resonances with n ≥ 6 in Figure 2, and it is very diffi-
cult to separate them through experiments. In the practi-
cal diagnostic application, it only can rely on theoretical
calculations to treat these high-n contributions. In previ-
ous works [1,13–17], an approximate 1/n3 scaling law has
generally been used to extrapolate the satellite intensity
factors for high n resonances. But for low Z or low ioniza-
tion stage ions, the satellite intensity factors don’t have a
good n−3 scaling relation. The reason is the following: it
is well-known that only when Ar � Aa, we have

σDS ∝
Aaji

∑
kA

r
jk∑

k′ A
r
jk′ +

∑
i′ A

a
ji′
∼
∑
k

Aaji ∼ n
−3.

However, generally for low Z ions or low ionization stage
ions, the relation Ar � Aa can not be satisfied. Even
though the relation is satisfied, due to the strong screen-
ing, the scaling relationAaji ∼ n

−3 needs to be revised [18].
In our SRCI method, after the renormalized matrix ele-
ments of a few benchmark points (several bound points
and one continuum point) have been calculated, we can
obtain all the DS strength in a channel by interpolation.

Fig. 3. (a) DS cross-sections by the SRCI method as a function
of separation from Kα resonance line for the n = 6 to nmax
resonances, the curves (down to up) correspond to nmax = 10,
15, 20, 30, 50, 100, respectively; (b) DS cross-sections on n−3

extrapolation as a function of separation from Kα resonance
line for the n = 6 to nmax resonances, the curves (down to up)
are corresponding to nmax = 10, 15, 20, 30, 50, 100, respec-
tively.

In Figure 3, the results for high n resonances n ≥ 6
of SRCI method are compared with that of n−3 ex-
trapolation from our data n = 4, and the extrapola-
tion is the same as the references [1,13–17]. The con-
tributions 6 ≤ n ≤ nmax in different maximum nmax
(nmax = 10, 15, 20, 30, 50, 100) are also displayed in Fig-
ure 3. In order to determine the total high-n contribution,
we must decide the maximum principal quantum num-
ber nmax for doubly excited states. In the EBIT experi-
ment [10], all the resonances until the collision excitation
threshold have been measured. So we think it almost in-
cluded all the high-n contributions, we choose nmax = 50
in our calculation. If we choose a small nmax, for exam-
ple, nmax = 10, we will underestimate the high-n con-
tributions (n ≥ 6) by about 25%, and the agreement in
Table 1 for n ≥ 6 resonances can not be preserved. The
contribution from resonances n > 50 is only a few per-
cent of that from 6 ≤ n < 50, which can be neglected. In
the practical diagnostic application, the nmax depends on
the plasma conditions, such as plasma temperature and
density. Using a simple method to estimate the nmax [39],
we can obtain the nmax > 100 when the plasma density
is 1014 cm−3 and temperature is 100 eV for Fe23+. As
the plasma density decreases and temperature increases,
the nmax increases [39]. So high-n contributions should be
considered in laboratory or astrophysical plasma. Com-
paring Figures 3a and 3b, the n−3 extrapolation for the
satellite density factor underestimates the high n contri-
butions (n ≥ 6) about 15% percent, and the n−3 extrap-
olation should be improved for high n resonances.
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Finally, we would like to conclude by making the
following comments. In the present paper, a simplified
relativistic configuration interaction method is used to
study the dielectronic satellite transition processes. In this
method, the important contribution of high-n dielectronic
satellite lines can be treated conveniently by interpolation
in the frame of Quantum Defect Theory. It is essential for
practical diagnostic application, because the higher the
principal quantum number of dielectronic satellite lines
is, the stronger the blending of dielectronic satellite lines
with resonance lines. Due to the relativistic treatment, our
SRCI method should be applicable especially for high Z
ions.
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tion of China, Pos. Doc. Foundation of China, Youth Founda-
tion of Chinese High Tech., and the Japan Society for Promo-
tion of Science.
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